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SUMMARY

This analysis is aimed at the near-wall processes in an
injected, axisymmetric, viscous flow. It is a part of an overall
study of solid propellant rocket instability, in which cold flow
simulation is evaluated as a tool to elucidate possible
instability~driving mechanisms. One such prominent mechanism
seems to he visco-acoustic coupling, as indicated by earlier
detailed order of magnitude analvsis. The major component of the
overall study involves numerical simulation of the full set of
coreflow equations of motion (nonsteady, axisymmetric) by a
modified MacCormack integration technicue. To clarify some of
the physical interactions inherent in the various regimes of the
flowfield, two (separate) singular perturhation analvses have
heen carried out. The head-end boundary reaime, and the injected
sidewall layer, both involve appreciable viscous dissipation, and
hence are characterized by predominantly parabolic differential
systems. The inverse square root of the injection Reynolds
numbher serves as a small-perturbation quantity. The sidewall
layer analysis yields a first order axial pressure distribution
(due to viscous effects) which correlates the available steadv
state data (CSD experiments, 1982) very well., The radial
dependence of the inner variables up to first order is solved, so
that the (x,t) dependence can be described by much simpler
partial differential systems; inner/outer matching was not
attempted. The finite-difference coreflow algorithm is
described, and a source listing from one preliminary version
(ROSCO-2) is provided. Convergence to steady state has been
achieved with this program recently (bv marching forward in time
from imposed initial data). The modular structure of the
computer program facilitates addition of special segments (such
as two-equation turbulence modeling).
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1. BACKGROUND

This is part of a study aimed at elucidation of the physical
mechanisms capable of driving acoustic instability in solid
propellant motors, particuarly of the type termed velocity-
coupled instability. Previous studies on the coupling between
velocity oscillations and the comhustion process in solid
propellant motors have demonstrated the complexity of the overall
phenomenon, but have not yet defined the basic mechanisms nor how
they operate under flow conditions orevailing in rocket chambers,
Critical literature review and order of magnitude analyses of
velocity coupling mechanisms have been carried out, including
visco-acoustic coupling and turbulence combustion coupling. The
major goal of the study is the analytical simulation of the
interior flow field within a solid propellant grain. The focus
is on the Stokes layer, with the objective of investigating the
particular instability mechanism of visco-acoustic coupling.
Preliminary analvsis has indicated that this mechanism is both
plausible and sufficientlv powerful to drive nonlinear
vibrations; it has been shown that the freguency-devendent
surface heat feedback component, due to viscous/acoustic
coupling, has both nhase amplitude ranges which would enable
driving of acoustic vibrations; its amplitude tends to increase
as the mean coreflow Mach number and the frequency become higher.
A comprehensive analytical model of the flow field within the
viscous wall layer region has been derived, for an axisymmetric,
nonsteady flow field configuration. For a simulation of the cold
flow test results gnerated at UTC/CSD, four conservation
equations are incorporated for continuity, momentum and energy.

The major aspect of the near-wall behavior from the visco-
acoustic point of view, is the laminar dissipative processes
tvpical to that region., This analysis is focused on the near-
wall processes. Although the solultions derived are nonsteady in
general, the radial wall-layer distributions obtained could hest
be demonstrated at steady state. For this reason, the review
herein is limited to steady behavior.

Culick [1] derived a solution to the Stokes stream function
equation or flow in a pipe with injected sidewalls. The flow is
rotational, and despite being inviscid, could obtain a solution
for the axial velocity component which satisfied the no-slip
boundary condition at the wall. The solution which satisfies the
boundary data, namely, u(x=0)=0, u(r=1)=0, and v(r=l)=1l, yields:

V=—5Sin(Ir?)/r  u=TxGs(Lr?)

Of the general family of solutions ohtainable, onlv that which
allows full determination of the vorticity (the azymuthal
component alone remains) by the available boundary data, is
physically meaningful; the rest were therefore rejected. The
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axial pressure distribution obtained from the momentum equation

is parabolic,
(R-P)/ev: = Tx*

This tvpe of injected flow field has been investigated previously
both experimentally and theoretically. 1In particular the early
theoretical work of BRerman [2], who arrived at a power-series
solution to the perturbation problem of suction in a prismatic,
vorous-walled channel, with the suction Reynolds number serving
as small-perturbation guantity. The analytical results of G.
Tavlor {3] and Wageman and Guevara [4] more closely resemble the
cosine terms of Culick ([1]; both [3,4] have carried out
experiments as well, and both demonstrated very good agreement
between the measured axial velocity vrofiles and the calculated
ones, It appears that Culick [1] has arrived at his results
independently, since no reference was made to any of the previous
works. In the experiments by Dunlap, Willoughby and Hermsen [5],
the formulation derived by Culick [l] was used to correlate the
measured data, again with considerable success, regarding the
coreflow axial velocity profile, that is, away from the close
neighborhocod of the wall.

Other experiments by Olson and Eckert [6] and later by
Huesman and Eckert [7] tend likewise to verify the validity of
this formulation, in particular regarding the radial velocity
profile, which indeed exhibits a peak near the porous surface
[6], as well as the axial pressure distribution (the latter shown
as a linear correltaion between the friction coefficient, C¢, and
the inverse mean axial velocitv, which are both proportional to
1/x.

The recent (and ongoing) experimental study by Brown, et al
[8] provides valuable information regarding the steady state
axial pressure orofile and the axial velocity distribution, as
well as nonsteady wall heat transfer (obtained by exciting the
standing acoustic modes in the tube). Departure of the steady
state data from the predictions of the aforementioned formulation
bv Culick (1] was attributed to possible transition to
turbulence. As will be shown in this study, the pressure data
obtained can be simulated very well with a first-order pressure
perturbation, arising from the laminar viscous wall-layer
analysis.

Earlier, Yagodkin [9] reported an experimental cold flow
setup, with an injected porous vipe. The maximal injection
Reynolds number was 250, which is 2-3 orders of magnitude less
than that corresponding to actual internal rocket flows. Hot-
wire anemometry was used to obtain axial velocity and axial
velocity fluctuation vs axial and radial distance. Turbulence
intensity seems to peak near the surface, and decrease toward the
centerline and toward the pipe wall. These observations are
qualitatively similar to those obtained later by Yamada, et al
[10]. Although a transition region, at R,,=100-150, was
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sneculated [9] to involve "large eddy structures®, no such
evidence appears in the experimental data reported [9].

Further studies by Yagodkin, with Varapaev [11] and
Sviridenkov [12] are theoretical, and address the problem of
laminar stability of injected channel flows, i.e., transition to
turbulence., Thus, modified versions of the Orr-Sommerfield
problem were investigated analytically {11) and numerically ([12]}.
Two related laminar flow stability analyses are by Goldshtik, et
al [13) and Alekseev, et al [14]. None of these theoretical
analyses indicates the presence of large turbulent eddy
structures prior to a full transition point, neither do they
obtain an origin of such turbulence on the centerline upstream.

Recently Flandro [15] has carried out a theoretical analysis
for a burning propellant in a cylindrical grain, under the effect
of incident acoustic waves. A detailed formulation was derived
with a double expansion, in terms of both inverse Reynolds number
as well as Mach number (indevendent small parameters). A
nonsteady premixed combustion zone was considered near the
provellant surface; the assumption is made, however, that flow
within the combustion zone is pure radial, i.e., zero axial
component to all orders. Thus it could be anticipated that the
results resemble (regarding nonsteady combustion behavior) those
of T°ien [16], and there seems to be only small differences
between the resvonse to tangent and to perpendicular wave
incedence. The problem is finally solved numerically, and
details of the inner/outer matching process were not given.

]
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2. ANALYTICAL MODEL OF THE COREFLOW

2.0 INTRODUCTION

In this chapter, the equations of motion pertaining to the -
core-flow simulation are presented, for an axisymmetric flow
field. Turbulence and combustion are precluded from the present
formulation, for reasons discussed earlier. Other than these
simplifications, the full compressible, nonsteady, viscous
equations of motion are considered, with all the dissipative 1
terms included. A schematic of the simulated flowfield with the —
various regions of interest is shown in Fiqure 1. 1

Treatment is divided into three subsections, in which the
coreflow region, the head-end closure region, and the porous,
injection sidewall region, are discussed in detail. The latter
two parts represent singular perturbation analyses of the -
boundary-layer type, which are incorvorated for generation of 1
boundary data within the coreflow solution procedure. Important
physical insights are obtained regarding the behavior of the
system at relatively large injection Reynolds numbers, coupled
with low injected Mach numbers, such that

2
MO ~ 0 (1/Re°)

The numerical algorithm developed for solution of the
coreflow differential system is a modified MacCormack scheme.
Its finite differencing details are discussed in the next
chapter, along with a current listing of the Fortran code. -




2.1 THE COREFLOW FORMULATION

The objective is to simulate the cold-flow experiments of
Dr. Brown at UTC/CSD, which utilize cylindrical geometry. For
this purovose, an axisymmetric formulation was derived, to
describe a nonsteady, compressible, viscous flowfield. For the
coreflow region, with typical injection Reynolds numbers of order
1000 and larger, we assumed constant and uniform thermophysical
properties. As mentioned earlier, combustion (or chemical
change) and turbulence are precluded at the present stage.

The five equations of motion, for continuity, radial
momentum, axial momentum and energy are presented in differential
form. A caloric ecuation of state (pertaining to perfect gas)
completes the model to form closure of the dependent variables.

The following dimensionless independent variables are
introduced, based on the two physical scales of reference,
inner chamber radius, R,*, and reference injection velocity,
v *:

o

r = r*/RO*' X x*/Ro*' t = t*/to* (2.1)

where to* Ro*/vo* (2.2)

The dependent variables are:

€= Q*r Vv = Vv¥vg*, u

u*/vg*, hy = h*/h_*

and P p*/Po* | (2.3)

In the last equations, the proverties used for non-
dimensionalization are the reference (injected) density, g:*, and
the reference chamber pressure, p,*; the corresponding thermal
enthalpy, hg*, is calculated from the caloric equation of state,

x T o *
ﬁ = F o (2.4)

where 7(=Cp/Cv is the specific heat ratio, is considered as
constant. The reference sveed of sound is

a5 = (ks ) = (G-OK

The corresponding injection Mach number is

(2.5)

M = v */a *
(o] o (o] (2.6)
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The reference (injection) Reynolds number and Prandtl number are,
b respectively,

Reo =€) V" E.o*/,u«* (2.7)

é —_— * - % x

g k= /A (2.8)

“I Recall that the viscosity, thermal conductivity and isobaric
specific heat are all uniform and constant within the present

cold-flow simulation, These idealizations are incorporated

merely for convenience, in allowing clear identification of

physical interactions within the coreflow, at low (axial) Mach
numbers; sharp pressure and temperature variation are obviously

- precluded. These simplifying assumptions are in no way essential
to the solution; variable viscositv, thermal conductivity, etc.,
can be radily incorporated in the numerical solution algorithm.

The dimensionless equations of motion are as follows, for the

region
0 <x <1, 0 <r«<1l, t > 0:
CONTINUITY:
0@ [ D Pk _ o _
> + rﬁ(’?V)‘f‘ X ——S,-—O (2.9)
RADIAL MOMENTUM:
oV ) 2 evuU ’
— 2 (r — -
>t YT 3’T< sV )+ X ,S"?_ (2.10) ]

AXIAL MOMENTUM: -

B o e )= S5 -

(2.11)
THERMAL ENTHALPY:

h ~ T
:2§;E§ ub~%:—%%;<&3’(tgakvdi>+ %%%KiﬁeﬂqlA;>== ;S:* (2.12)

.




where the right-hand side (source) terms are defined:

_ 43 zv
- %F,i/mf
(2.13)

s,= U (% 32+ L (4 adu, 0

a-xz Y IX (2.14)
S B R TR
* ﬁkzw(‘o’—&){é{ @+ 69 ]+ (B (39
4 ¥(F+ %) +%3{r%l>"2] % :
(2.15)

The parameters, Y, Pr, Moz, Reo are all constants.

The differential system for the coreflow can be written
in short notation,

We 1D Gk _
— +-}-5?(rFK)+ Bx =S, k=4 (2.6

where Uy is the non-primitive dependent variable vector, with the
components defined:

sz’ U, =0V, Us=PU, U’;fh (2.17)

while the flux terms Fr(U), Gi(U) depend only upon the vector U
(when , M, are considered as constant parameters:

®

F":::fv) E'Z_—_fvz) F—;=f“\/> F4 =?rth

(2.18)

L I_,.._“

-
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G=pu, G521==§Dva&l) Gy = f“*?*-ta/vAAJZ
G4 =7PNU (2.19)

Note that incorporation of the pressure gradient within the S
source term in the radial momentum equation, while the axial
pressure gradient is included within the axial flux comonent, Gs,
is merely for convenience in the solution process. In the
meantime, the viscous and thermal dissivative terms, “0(1/Reo),
are expected to be very small over most of the coreflow domain,
excluding the neighborhood of the walls,

The Boundary Conditions: The following physical boundary data
are avallable, for the cold-flow simulation:

(a) On the centerline, (t, r=0, x):

V=0,  2ufor= oplor =nfor =0 (2.20)
(b) At the porous (injected) surface, (t, r=1, x):
v = ~v,(x,t), u=0, h = hy(x,t) (2.21)
(c) At the (nonpermeable solid) head-end closure, (t, r, x=0):
v =20, u=20, h = hy(r,t) (2.22)

The functions Vo (x,t), hy(x,t) and hy(r,t) are arbitrary imposed
(generally variable) distributions.

(d) The exit plane, defined by (t, r, x=L), forms an entrance
into a short, convergent nozzle section. This nozzle section is
treated separately from the rest of the flow field; several
assumptions are incorporated, as follows:

(d.1) The throat, A, (t), is variahle but remains
sonic at all times.

(d.2) The convergent section is short, and introduces no
dynamic effect; it responds instantly to any changes,
and is considered (in this sense) quasi steady.

(d.3) The sonic surface at the throat is reasonably
approximated by a plane encompassing the entire
(circular) throat area. 1In other words, within each
computational cell, the flow can be considered quasi
one-dimensional.

The last assumption is used to facilitate calculation of
the implicit functional relationship

£1 (u/a)2, At/A, ...] =0 (2.23)

PR
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within each computational cell in the discretized flowfield within
the nozzle.

The foregoing discussion has summarized the corelflow
analytical model, including the equations of motion and the
relevant boundary data.

Simulation of the nonsteady flow field, which arises due
to perturbation of the exit nozzle can be performed, with the
initial data corresponding to steady state. As mentioned
earlier, solutions are generated numerically, by a finite-
difference algorithm. Prior to the description of the numerical
algorithm, two special regions in the flow are discussed in
detail: the head-end and the sidewall layer, which appear in the
following two sections.
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2.2 THE HEAD-END CLOSURE LAYER

A solid, planar head-end closure is considered at x=0, as
shown in Fig. 2. The flow in this region is radially injected
inward (from the porous cylindrical wall), then, near the
centerline, tends to turn toward the axial direction.

A boundary layer is formed near x=0, to connect the regular
flow regime (with apperciable radial and axial motions), with the
end-wall where no-slip conditions orevail, viz., v=u=0. Within
this layer viscous forces are of importance. The dimensionless
parameter

0 <g= 1/ d Reo << 1 (2.24)

can serve as a proper small perturbation quantity. The layer
axial coordinate is therefore stretched,

Thus, the independent variable system is transformed from (x, r,

t) to (y3, r, t) in the layer. Further, the dependent variables
are now perturbed, as

f‘:-‘fo-(-&?‘ P V'-’Vo‘(’EV' 5 u=uofsu,)
h =ho+eh,

where the dependent variables are

(2.26)

VolYyirL,t), v (yl,r,t), uy (Yq,2,t) ... etc., all assumed to bhe of
ordet unity. ]For convenlence, the following abbreviated
definitions are introduced:

=foVe, G= U, RECN 4OV, GEOUFOUo (2.27

The transformed axial derivatives are now,

’a/ax = -é—’a/m' 8 = E” 3%‘4 (2.28)

J

while the (r,t) variations remain equal to their counterparts in
the original equations of motion.

In the remainder of this section we will derive the
perturbed system of equations of motion for the layer, and
collect hierarchies of egqual power of &.

Obviously, the injection Mach number appears as an
additional parameter in the formulation (equations of momentum
and energv)., In the flow fields of interest for simulation
herein, M_ is also very small; in consideration of typical
experimengs at CSD/UTC with air injection, we find

— ]

-—

—
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Mo2 ~ 0(1/Rgg)~ €2 (2.29)

- - which adequately represents a range of cold-flow conditions.
. This offers great simplification in the analysis, although at the
cost of narrower range of general application (considerina the
! relative freedom of the two major flow parameters, R,, and M.).

Therefore a narameter is introduced,

i _ Yeeo _ E1
4 K-m = W - ’m} O(l) (2.30)

according to the foregoing considerations.

il .The question of timescale is not trivial, since it depends
upon the range of frequencies of interest. The following
reasoning will demonstrate that for the range of conditions
considered for the present simulation, the timescale can remain
the same one as in the coreflow. The viscous layer thickness is

Sv ~ Ro/YReo (2.31)

where Reo = VoRGA® (2.32)

The Stokes Layer thickness (for acoustic perturbations with a

frequency f,)
*
8sro “VV£S (2.33)

The ratio of these two thickness scales is,

S\,/Ss‘ro ~ RN = S.;‘;/z (2.34)

where S is the relevant (injection) Strouhal number. The range
of Strouhal numbers considered is Spg ~ 0(1), so one need not
introduce any additional timescales.

The continuity equation becomes, after using the perturbed
variables, Egs. (2.26)-(2.28):

2 (o e6) + 2( 8wt eF )+ £ 2, (ur g6, %u)
= —"F(Fo“’ EF, ) :

.o (2.35)




From which the following hierarchy is collected:

ORDER 1/ € :

ZBGBo/ehj,‘==C)

Gy, = Gy (r,t)
ORDER &€ ° (ZEROTH) :
L e e _ _ Fe
3\7 ’ZST ‘M), r

ORDER &1 (FIRST):

—

26 . F . 2P F
2t v oSy S+

o oy,

Similarly, the radial momentum equation yields

(2.36)

(2.37)

(2.38)

(2.39)

2 [Rver]+ F[R%re(Rwrh V) r ez(msmezp)]

+ £06) 3‘53(@—@, &S5, +

? VO & 92Vl
indc ZNJ,

The following hierarchy evolves:

ORDER 1/ € 2:

2Efor =o

+ELW'[Fu°+2(Fu”Fu.)J__ Bl g VAR

(2.40)

(2.41)

4 e A o
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ORDER 1/ € :

XF-W’)/?% +KM’2‘R/21'—.= o (2.42)

ORDER  €° (ZEROTH) :

2
a,(.F—'Vo)-i—?y(quf (E)“'Fivo 99‘;? (2.43)

ORDER €1l (FIRST):

1 ¥ MV
*3 ryy, + < - (2.44)

The axial momentum yields, after similar treatment:

ORDER 1/ €3: Hotn), =0 (2.45)
ORDER 1/ € 2: ot (x, =0 (2.46)
ORDER 1/ € : ‘d@.uo)/aq,:: O (2.47)

Thus, in view of Eq. (2.237):

U = ugy (r,t) (2.48)

ORDER €° ZEROTH:

aGbV fz) o\o AU
4 'Z?'(Uoérfutéo = "ér + % ,a—y—’tz_

’Jt P+ 3
(2.49)
ORDER &1l (FIRST):
= ) 2
S + 3¢ L6V 6°)*'"§‘9,(“' G)= —(Gwte ) fr
MU, (2.50)

e T 5,

-—

1
L_A .
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At this point, the lower-order anlaysis results can be
summar ized:

Anfoy =0 —+ Go=&G(rt)
W /or =0 —=2&fr=0,
I where: cpo = S’a"lo . (2.51)

D GoVo . A
o+ Ku G =0 ——w@?" + K B =0,
I
K =0 = 2R ?—%?-9’:0 —» Clo=‘uo(f;'t)

Y,

- Based on the foregoing, along with the boundary data:

&
R

|
. the natural choice of solution for ugy is the trivial one,
i Up (¥3,E,t) =0 (2.53)
) Thus, G,(yy, £, t) = 0. Further, from Eq. (2.42),
dp1/Ar = 0 (2.54)
i which therefore 1e3vee only time-dependent pressure within the
k layer, up to O
IA
: =) , R=60) (2.55)

which implies also, for ¢=§"’7 :

F=£E) , =) (2.56)

With the foregoing results incornorated, the enerqy equation
becomes much simpler to handle; the following hierarchy is
obtained:

orpER €0 (ZEROTH) :

%% +77d) ’%_z;_, +m?7‘:%- 7‘bv" ??%a
]

(2.57)
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Note that the specific enthalpy, h,, and the density may vary
with both y; and r, despite ¢y = d:(_t).

ORDER E1 (FIRrsT):

%« +3¥d fQu_‘ + 3’2;;\_/0 +T¢°% = —T(d%v, +Q, vo)/r
+ %%'/m‘z . (2.58)

To lowest order in the perturbation quantity, & , one may
collect the following differential system, written in convection

form.
’%%_‘_ ’%_1? + ’%‘ S l%__ (2.59)
f?_"g + 1:,75% + é% 92"‘; (2.60)
ACLT o N L+ 3 - % L2

3 ryy, (2.61)
?aaho‘(‘ F;% .(_61'3171‘_5 L 2%, dB

= + ==
oy de (2.62)
Note that G oY1 here. With po,(t) imposed externally, (as
expected), éhis system forms a closure for 4/ hgr Vo and u,.
The only parameter appearing explicitly is the Ptandcﬁ number,
which is of order unity.

The associated boundary data are as follows. At y;=0, the
head-end plane:

Vo (0O,r,t) - Uy (0,r,t) =0 (2.63)
hO (0,r,t) = H, (r,t) (2.64)

where H, is an arbitrary function. Note that

%(0) r‘,t) 7__‘ I%&)/Hw(ﬂt) (2.65)

8 which follows from the equation of state, with py(t) impressed

upon the layer by the outer - flow field. Now in the radial
direction, the boundary data are as follows. At the injected
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porous wall, r=1l:

VolYyprl,t) = =V, (2.66)
uy(vy,1,t) =0 (2.67)
ho(yyp,1,t8) = Hy(t) (2.68)

On the centerline, r=0:
voly1,0,t) =0 (2.69)
Quy/dr (yy,0,t) =0 (2.70)
2hy/dr (yy,0,t) =0 (2.71)

Evidently, the second-order derivatives in Eqgs. (2.60) through
(2.62) are in the axial direction (y¢), so that the velocities
and thermal enthalphy must match their outer-field counterparts
at an intermediate region of common validity.

In summary, the two important results of lower-order
analysis herein are as follows,

{1) Pressure is uniform within the layer up to Of 82) - at
least, i.e.,

Po = Polt), o) = pp(t)

which can be expected, in view of the thin layer assumption
as well as the low velocities.

(2) The axial velocity is small and of order §& , namely,
ug(vy,r,t) = 0
while u; # 0 in general.

The zeroth-order differential system, Egs. (2.59)-(2.62),
with the boundary data, Egs. (2.63)-(2.71), form a closure.
Obviously, the pressure p.(t) is impressed upon the layer
externally. Also, externéﬁ boundary data is required for solution
for the two momentum equations and the enthalpy equation, as
expected; this would enter through inner-outer matching. The
actual method of solution will not be discussed herein,
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2.3 THE INJECTED SIDEWALL LAYER

2.3.0 THE SINGULAR PERTURBATION SYSTEM
I A porous, injected cylindrical pipe is considered, as shown -
in Fig. 3. The flow region of interset is close to the surface,
where viscous forces are expected to he appreciable within a thin
layer. .
For the neighborhood of r=1, the following transform is
l proposed for the radial coordinate: -
y = (l-r)/€ (2.72)

which magnifies the wall layer, with

! 0< & =1/yRyg << 1 (2.73) )
' as defined earlier, in Eg. (2.24). Thus,
- /I = “'él_?/mj (2.74a) -
' Bl/'ﬂ"’ = —é’,,'al * (2.74b)
and r=1- gy (2.75) —«

Again the assumption for small injection Mach number is
constrained by:

= YReo g® o
K = TME T TS o) (2.76) 1

in agreement with the available experimental data.

The independent variables are (x,y,t), while the associated
dependent variables, in the wall-layer, are perturbed,

€ =€ +€C , V=V, +EV, , U =U+EU,

hf—"’lo'f'ghl (2.77) -

the following abbreviations are introduced,

-2, =G\, =Gl | GEQU U, , FERY+E Ve  (2.78) -

e e : . " N »




These are not to be confused with their head-end counterparts;
although the notation is the same, the functional dependences are
quite different, obviously.

For reasons explained fully in the head-end wall laver
d analysis, no further timescales or (axial) length scales need to
L. be introduced.

ﬁ 2.3.1 DEPRIVATION

[ For the perturbation variables of Egs. (2.72)-(2.78), the

; continuity equation is:

. ) .

5 = (G+ee)— & 5y(R+eR +E'qV ) + 5 (686))
=—(1+ey)(R+&F)

(2.79)
The following hierarchy is collected:
ORDER 1/ &
-‘ZE,fZM =0 (2.80)
£ =6 (x,t)
(2.81)
ORDER €° (ZEROTH)
1325%1 + g° (Zﬂf‘ - —F
0%} 4 aX ‘avg - o (2.82)
ORDER £ 1 (FIRST)
2¢ 26 __ QFVl "
v ox "7"14" =-F-Y5 (2.83)
The radial momentum balance becomes: :
'D . K
2(rvef)+ % [Rlto+ E(RuU U )| £ ¢ -

- %[ % (rerd] = —(eey)Do+ D

D, = Fol+e(RVrF W) «E(F+GW)Y, |
—t
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D, = e (vey) i (ZV" €T ) — (vorev)i+ey) &
f . B
o Y, M
| + €° ?a;z ngi %‘é(m*eaay)}
" 2 ? VO ?ZVI -
N . Te ) 5 L) en
The hierarchy obtained is:
ORDER 1/ E3:
‘—Km’aPo/’a\j =0 (2.85)
Thus, t’o =P°(_X)t)

ORDER 1/ £.2:

—KuTR/2y =0 R=R(x ) @

ORDER 1/ & :

—DEW/M =0 (2.87)

ORDER &° (ZEROTH):

o, Rwe <t
Tt S~ y(RYrAR)=—RL 3

ORDER &1 (FIRST):

75, 2 (R Ru)= 3 [V rfiw)] = —RWY

.9 L 20,
e+ 330 5% 4T o
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The axial momentum balance is:

(G e6)+ 2 [Collo +E(@Uor M) | + & 3. (reer)

%’?%2 = - (|+29)Dz+9(‘*55)(i>( e%)

A
=3
+ '%’ (‘*8@)(”3)( 7 tESV 3“0)+ +€D;‘9a§, %—22926(’

’ +€z§("é')-'57ay(vo+ev, ),

—Dz = GoVot 8(G°vl +G,Vo)4-&"(é,\/,+§’,a, Vo) . (2.90)

The associated hierarchy is:

ORDER 1/ E£3:

=0
KM%O‘X (2.91)
hence, SR Po = Po (.t) (2.92)
ORDER 1/ &£ :
K i ?—E' — %(F;u.) = 0 (2.93) 1
where we used F ug = G vo This equation is of great importance, 1
as will be shown f%ter .
ORDER € ° (ZEROTH) : j
- o Yi{ Vo )= o Yo " RN 1
21_ oK 214 W (2.94)
ORDER &1 (FIRST):
26 "]
1rtf'*'7»((6;1401-Céoli‘) %%a<!;‘vl*'§:véllj)——
? 1
.o =="(631V5‘*{5M34;)"Csb\évelﬁ“ f%?&, + o _ 2%'%;%; -

(2.95) i
_ 1 9% 3

sfaxazj
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After similar substitution, the enthalpy equation in the
wall layer yields the following hierarchy, for

B =Fho t=gh tfho

ORDER 1/ &

(2.96)

—yRRe _ 2%

(-] 914 (2.97)
Note that on the left hand side, according to Eqs. (2.80), (2.87)

’a’vo@ =O

(since Fo% 0 in general). Now, according to Eq, (2.92), Po =
Po(t), sO that both sides are identically zero, as

&, =TRE/(¥-\) =&, (t)
Therefore, Eq. (2.97) does not vield any new information.

ORDER &£ °© (ZEROTH)

%4' %‘&Q,uo "‘"‘(TCPVo-t—WV,) = — Qv + & = ’9?_3_:

+ (1) [uo?‘b (\4 Rl [ ]

-

(2.98)

ORDER & 1 (FIRsT)

P+ 2 (o)~ 2y, ==V [ ey sy v

+(Y-{){(u,2¢v+uo§-é) vaﬁff———(?%’ 37—;‘99)

(2.99)

This concludes the derivation of the perturbed equations of wmotion,
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2,3,2 ANALYSIS-SIDEWALL LAYER
The results of lower-order analvsis can be summarized as
follows. From Eq. (2.81), -
£V, =Ffx,t)
while from Eq. (2.87), using the last eguation,
Vo = Vo (X,t) (2.100) —
Thus o, v, and F, are all independent of y. Further, from Eqgs.
(2.85) and (2 91) clearly L
B =R(t) = gh.=q &)
while from Eq. (2.86), !
p; = Py (x,t); (2.101)
so that hoth p, and Dy are indevendent of y, but Pa (t) is uniform ,_j
within the entire chamber, as expected. As a conseauence of Eq. \
(2.101),
Ghy +5he= &, (x ) (2.102)
One may now proceed to solve Eg. (2.93) directly for ug,: ]
L
L MWofr) = K IR[Ix
i
.l
K B ‘
Uo( X, Yyt )= (—— ) -
(x,Y, £ Ox 4
(2.103)
with the boundary condition, (no-slip):
u, (x,0,t) =0 (2.104)

Of course, the (x,t) dependence of u, still remains to be found.
However, its dependence upon the layer coordinate, y, is found
to be linear; this result is certainly not obvious, and has
several important implications,

The shear stress within the laver,

_Z-;‘; ~ ’Z'U-o/mj = Ku (gﬁ;(_>/f:° (2.105)
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is obviously nonzero in aeneral, while the associated azymuthal
vorticity within the layer is independent of distance from the
wall at any given station (x,t). Even more striking is the
vanishing of the viscous dissipation term at zeroth order:

25%‘0/2?’1==

which leaves in the zeroth-order axial momentum equation a
balance of inertial terms, strictly, ct. Eq. (2.94). This
explains physically the success (up to first order) of modeling
this family of injected flows by assuming rotational, inviscid
motions; such modeling indeed obtains solutions for the axial
velocity profile, which satisfy the no-slip condition at the wall
{(r=1).

(2.106)

It further appears that the shear stress, Eq. (2.105), is
proportional to the first-order axial pressure gradient, while
being inversely pronortional to the injected mass flux, as would
be expected. Of course, 2f/9x depends on Fo, and one expects
their ratio to be finite at the limit as zero 1njectlon is
approached.

In addition to the foregoing result for axial velocitv,
the zeroth order formulation can be utilized to solve for the

y-dependence of the other fependent variables. The continuity
equation can be written now as

B & +R =0

From Egs. (2.81) and (2.100) we know that Fj and Sz are
independent of y. Hence, one mavy split the fore901nq eauation,

MW+ R (x,t) = G (2.107)

'5
Vo ‘5)()15 - = —Co (X,6) (2.108)

where C_(x,t) is a common separatlon parmeter, with a range of
values ?ully determined by the houndary data.

The second equation yields

Fy(y,%x,t) = Bgo(x,t) + Co(x,t)y+ %3(3;»2/2 (2.109)

where:
Bo(x,t) = Fy1(0,x,t) (2.110)
go(x,t) = K\—Z' g—i (2.111)

PRI I
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Similarly, the zeroth order radial momentum ecquation is split:
OB/t + Vo = C,(%5%) (2.112)

S (Kt )Y~ 2y (VeFAVR) = — C,0%,)

The last equation can be integrated,

(2.113)

Fo X

\G(@irxofi) ==E3|G‘jt;)‘k'C:‘-\Gc;’jjyi' Eg!!EZi-.r%gg?é':%g%

|

B|(th) =V, (O)X)‘t')
(2.114)

The foregoing results for Fy and vy yield for the first-
order densitvy:

S (Y, xt) = -V =(B—€B)/No +

K 9B P L% )ope
'f62Z5'—<:¢Vs + S5 22 52 |
Note that: gl(o,x,t) = (By - ?oBl)Vo
so that €, is uniquely defined and an additional integration

constant is not necessary. Also, according to Eqs. (2.107) and
(2.112),

e/t = C\— Ve

(2.116)
Now, since Qfﬁho*fohi , and we already found that
b, () = Moy =38 (Y =0
then:
h o
1(y,x,t) = — ‘Eg,()’rxrt) + By(x,t) (2.117)

Thus, h;(y,x,t) is second order in y, like @;; the appropriate
boundary condition is,
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By(x,t) = hy(0,x,t) - hy(By ~ ©,R;)/F, (2.118)
For the axial momentum, after dividing through by Fyu,, Ea.
(2.94) leads to:
[ 2% 1 20uho , Ue 'Ky = 2 QUo
gz%ﬂ te & Tk 2x T ox
Uo "2y ° 'mg o " (2.119)
Now, according to the foregoing results:
L o —
= %-"( = GCo/fo (2.120a)
- L IR
& % t(??“h’bq—c’/p" (2.120b)
E" h‘ﬁ = F/E’% (2.120c)
Subst1tut10n into Eg. (2.119) vields, after some
manipulation:
24, __[ﬁ % _ L2 (s JUyYE +
Va%—%)y —80 O/Fo
(2.121)
where 1
= K L = —
U, (x,t)= . ox =3-le= Ueby - (2.122)
thus,
— e 193
Uy, x,t)= e[?’oaa'?"z(' %c(ﬁu)]‘f/& +
*(_\I/;’%J—.‘t;—— C_%C_L) 74%_ - &(7874/& (2.123)
°
and

uy(0,x,t) = 0

satisfying the no-slip condition at the wall. Thus, the
perturbed axial velocity is third order in its y-dependence, and
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the corresponding viscous dissipation term (unlike its zeroth-
order counterpart), does not vanish.

The zeroth order energy equation can now be written as

! -'%% /‘3-¢° 2%—%’ — (%"’Vc (2.124)

3 Now o = ym/’dx

3 and
‘ ity = Qle U T
=) Y
Hence, the right-hand side of Eq. (2.124) becomes, after
substitution,

ke _ Voco) e
X %2% tVo (\6 ‘) 11['—"-(j'aékh'
Now the left hand side of Eq. (124) depends only on t; it

therefore remains that the term in square brackets formally
vanish. Thus,

Rk _ oy Ve
X (J; ,%%; =0

(2.125)

UelNe = Ca (), v #0 (2.126)

One may turn now to the first-order energy equation, which seems
to vield some simple and highly useful rseults even without full
solution. Equation (2.99), written in terms of pressure, reads:

%L +v 5 (R Bu)-TZ RV = Y[RV y+Ewtry))

+<v—.)[u% vl % ]
Wﬁ—ﬁ)[' :}2%;' o

(2.127)

t
4

a 2 a &
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After some manipulation one obtains:
2 WR(F- Ty ve) +TR(BE ey +v,)
+ U IR foX — 7—',31- 37"’h/’3'ﬂl =0 (2.128)

The first bracketed term, after using Eags. (2.125) and (2.126),
is simply
Vo = (C1-voCo) /Fg

The enthalpy term, according to Eas. (2.115) and (2.117) is:

Y4
‘%%%%; = E%;Z‘- Zig;s’ Vo ;)lﬁu. "bzo zpc(ﬁ59«ﬁi)‘
(2.129)

The axial velocity gradient is, from Eq. (2.123):

o px = 2 [ LT - L& 0| uh +

*ax[_"m &quﬂl ‘.B"U;]y (2.130)

Substitution of the last results along with the appropriate
expression for vy, into Ec. (2.128) and collection of eaual
powers of y yiel S:

~p —(v VoCo> ”_a_<§>;(,€)+3 } +
*7"%‘( m(&v) Vo+C'F-Z"C° U’ %“j+

LN B+ Bel e 3 C%)}y72+

3 ‘v’f'%%(%)}w/s =0

Compatibility with the foregoing derivation (in which y and
{(x,t) variable separation was implemented), can be maintained,
provided each of the bracketed terms in Eq. (2.131) vanishes
identically. The resulting four compatibilitv relations (partial
differential) would determine the behavior of the wall sublaver
svstem up to the first order in &€ , the small perturbation
quantity. However, a total of four undetermined coefficients (at
most) should arise necessarily, to accommodate coupling with the
outer, inviscid (core) flowfield.

(2.131)
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Of particular interest in the present analysis is the
pressure,

P(y,X,t) = pgt)+ Epy(x,t)

which is a directly measurable quantity. From the axial momentum
balance in perturbed form, cf. Eq. (2.90), it is evident that the
rotational ("inviscid") coreflow can not sustain a first order
term llke'ap /2% herein; the lowest-order a§1al pressure gradient
effect evolves only at second order, or E°p, level. This is
clearly borne out in the analyses of Culick, Snd others, in which
the axial pressure drop is progprtlonal to M (Mach number of
injection, squared), or to < according to the convention
employed here, cf. Eqg. (2. 76).

This, however, is not what is ohserved in the recent injected

cold flow exveriments of Brown, et al at CSD/UTC; the measured
axial pressure profiles clearly indicate variation of order M, ~ E .,
or f1rst order.

It therefore seems that the viscous wall layer, with its
inherent first-order dissipative processes, impresses this axial
vressure variation, at first order, over the entire cross section
of the injected channel.

To resolve the axial variation of py by the wall laver
formulation, the second compatibility condition in Eqgq. (2.131)
can be used, corresponding to the y-term:

2 [ BoUs b
x( ) ter @2 R g

(2.132)

For the special case of uniform (zeroth order) injection at
steady state, the presence of a nonzero first-order pressure
perturbation would imply physically a corresponding nonzero
perturbhation upon the mass flux injected, i.e.,

B, = Fy(0,x,t) 90

as given by Eq. (2.110). Now at steady state, although B,
expected to vary with p;, we have assumed for simplicity that
B, (x) =-B = const.

With the foregoing steady state assumptions, Eg, (2.132) is,

for all practical purposes, an ordinary differential equation,
for 0O<x<L:

iﬁ—"«-b(d")ﬁ—b =0

(2.133)
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A .
where 'p; (x) is the steady state first-order pressure
perturbation; the coefficients are:

- R/B& L= /B
b = Ka/Ve ' R

(2.134)

Note that at steady state, according to Egs. (2,107) and (2.112),
respectively, C,=F, and C=F,v,; thus, in Eq. (2.132), Cy-Cov,=0.

The boundary data are,
dpl/dx(0)=0, and pj (x=L)=pg, (2.135)

The solution is straightforward,

dﬁ/a(,x = —\]b,/b‘ 765 (‘/bolo. X) (2.136)

700 = b7+ L 0] o VBB X |

This concludes the derivation of the injected, viscous wall
layer, up to second order. Full solutions, namely, matching
between inner and@ outer expansions will not be attempted herein.
Important insights are obtained already from resolving the near-
field hehavior up to second order, in terms of the y-polynominals.

(2.137)

S §
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2.,3.3 DISCUSSION OF RESULTS

To facilitate comparison with the experimental data
reported by Brown, et al, one may form the normalized axial
pressure differential,

N A
AR = AR kR = g5 [ Peo)- Pod] =
= {1 (R+ef) — (Brefr Lo oolb )7 =
i?@ L,‘,[can\f;:g, X | . (2.138)

This axial pressure differential expression is used to correlate
the experimental data of Brown, et al, as shown in Fig. 4.
Clearly, the measured pressure profile is correlated very well by
Ea. (2.138), which is obviouslv superior to the expression
attributed to Culick, shown as well.

It should be vointed out that a single point of the data (x;
o) ) has been utilized to obtain a scale for the comparison (this
1s necessary, sSince no physical input is available regarding the
value of By, the perturbed injected mass flux, necessary for
defining by, b,), along with p,=F, = vy =1, and ¥ = 1.4.
Suppose now that K =1, and we select a value of B,=60. (This is
based on some triaT and error - but shows how the correlation was
obtained without any reqgression analysis); then,

bo=1/By=1/60, by=1/YBy=1/1.4x60, = 0.012

Vboby = 1/{¥'B, = 0.014

Two important observations are therfore demonstrated: (1)
axial pressure variation to lowest order is O(E), and is
governed by the dissipative wall layer processes, as shown in the
rigorous analysis herein. The behavior obtained in x differs
from the parabolic pressure droo formula of Culick [1], and (2)
one need not invoke local turbulence generation or turbulence
encroachment upon the surface to explain the departure of
measured Apy from a laminar behavior.

Another property of interest is the wall friction
coefficient, or dimensionless wall shear stress,

Tw*/_é_ €~ aw M"* ('UGO)/‘L u\ez

where u* denotes the mean axial coreflow veloc1ty. Using
dimensionless convention employed herein, along with the wall

layer coordinate,
%/
C:po - ZD;Z% (2.139)

y— ——— N T — — - LA S nae avun e Boen svens 4 —w ~ T - e

|
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-—d . . .

as u=2x was used, for a cylindrical port, and subscript zero
denotes zeroth order convention.

i Now, from Egs. (47) and (77),
{
Gt g e 20 e = g (e 78 )Y Gllorx)
o — > IX - v 2 |
& £ X (2.140)
l where the first square root term is of order unity. This

parameter is plotted against 1/2x (which denotes the ratio of
blowing to mean axial velocity) in Fig. 5. A nearly linear
relationship is obtained, using the foregoing coefficient values.
In comparison, the data obtained by Olson and Eckert [6] is
l considered. Ref. 6 includes a plot of the ratio of (axial
pressure gradient)/(mean dynamic axial head) vs v */u * = 1/2x.
This obtains an almost linear correlation, as wou?d be expected
from a parabolic pressure drop. The slight curvature however,
particularly apparent at small values of 1/2x < 0.01, can be
followed only with the present formulation, not with any
parabolic pressure profile. Thus, the first order pressure
distribution, obtained from the viscous wall layer analvsis,
agrees well with the measured data of Brown, et al [8], while the
associated wall friction coefficient follows the same trend as
that measured by Olson and Eckert [6].

2.3.4 CONCLUSIONS

A derivation of the viscous wall layer regime has been
presented, pertaining to the injected flow in an axial porous
tube, in simulation of interior solid propellant rocket flows.

Solutions for the radial coordinate (or y-devendence) of all
the dependent variables up to the second order have been
generated, in polynominal form. The (x,t)-dependence is defined
in terms of a relatively simple partial differential system.

Particular results of the analysis for the special case of
steady state are: (1) the first order pressure perturbation was
solved for and its axial distribution is given explicitly; this - e
term is entirely due to the laminar dissipative wall-layer
processes, and (2) the blown wall friction coefficient was
likewise defined. Both results correlate well the available
experimental data. Finally, (3) the zeroth order axial velocity
distribution within the layer is linear radially; thus, to lowest
order, viscous dissipation is negligible in the axial momentum -
balance. This indicates why inviscid, rotational solutions (such
as those of Culick [1l]) and others, chosen so as to satisfy the
no-slip condition at the wall) are so successful in representing
this family of flows -~ up to first order.
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FIGURE 2.1 SIMULATED (AXISYMMETRIC, NONSTEADY) ROCKET
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. NOMENCLATURE
g A, A = nozzle throat area and port exit area, respectively
‘ a = adiabatic velocity of sound
- Ce = wall friction coefficient, Fa. (2.1329)
Cyr Cp = isochoric and isoharic specifiec heats (J/kg-K)
F = radial mass flux (dimensionless)
G = axial mass flux (dimensionless)
h = thermal enthalpy, dimensionless
Kn = ratio of inverse Reynolds number and Mach number
saquared, Ea. (2.30), (2.76€)
L = chamber length
M = Mach number
D = pressure
) = Prandtl number, Eq. (2.8)
R,* = channel radius
Reo = injected Reynolds number, Ea. (2.7)
r = radial coordinate
51'2,3 = "source"-terms in the ecuations of motion for
coreflow, Egs. (2.13)-(2,15)
Sro = Strouhal number, injected, (Eq. 2.34)
t = time (dimensionless)
Uy = parameter defining (x,t) - variation of wall laver
axial velocity component
u, u = axial velocity, and mean axial coreflow velocity
resnectively
' = radial velocity component
X = axial distance (dimensionless)
\'4 = radial, magnified wall layer coordinate,
perpendicular to surface, Eq. (2.72)
-2 Y1 = axial magnified coordinate (head-end boundary .

laver), Eq. (2.25)
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Greek Symbols:

/) =

A
d
3
A
es

Cp/cv specific heat ratio

difference, increment, Eq. (2.138)

length scales, Eags. (2.31)-(2.34)

small perturbation quantity, Egqs. (2.24);: (2.73)
thermal conductivity of gas (air), J/K-m-s

viscosity coefficient, kg/m-s

? = density
Subscripts, Superscripts:
(o = denotes zeroth order (perturhation)

()N
()*

denotes first order perturbation

denotes dimensional quantitv

——d

adn b
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3. NUMERICAL SIMULATION

A comprehensive numerical algorithm has been derived an
implemented for simulation of the axisymmetric, nonsteady
internal flow field.

The finite difference method used is a modified MacCormack
explicit algorithm [1], utilizing the original predictor-
corrector scheme. Unlike the original MacCormack algorithm,
which utilizes split time marching [2], the present scheme is
unsplit (namely, both radial and axial space derivatives are
taken into acount at each internal predictor-step, within a
single overall time increment). This affords better stability,
vparticularly near the walls [3].

The initial spatial discretization scheme is shown in Figq.
3.1. Preliminary versions employed uniform radial mesh size, to
save computation time in marching toward steady state from some
artificial state described by the initial data. Since the time
marching is explicit, the smallest spatial increment must
obviously be used in the Courant-Friedrichs-Lewy condition,

C'ZstﬁﬁRmin < 1

where c=a+V, is the dimensionless maximal, local characteristic

slope. ax

The foregoing drawback due to stability recuirements is
marginal compared with the great advantage (at least in terms of
the coreflow region simulation), when compared with implicit
methods which would require much more CPU-core space for setup
and execution.

The algorithm uses the dimensionless equations of motion in
conservation form, as shown in the preceding Section. It is
written in FORTRAN IV and overated on a DECK mini computer. A
schematic of the program morpholoqy is given by the block diagram
of Fig. 3.2. A preliminary listing is provided in Appendix A.
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INTEGRATION BY MAC CORMACK METHAD
TWO DIMENSICNAL SIMULATION IN R-X

2010, KY=REOS=DENSITY GF GAS

v, Jh K)Y=RADIAL MOMENTUM=RHOG #* RaDIAL VELOCITY
wE3eJds Ky =AKTAL MOMENTUM=RKOG # AXKIAL YELOCITY
(4. o R)=THZRMAL ENTHALPY=RHGG # ENTHALPY

JXa=NUMBER GF RADIAL DIVISIONS
A X =hUMBER CF AXIAL DIVISIONS
JMi=dX (-1

401l =AN (-1

:AMA, REYNCLDS NUMBER, PRANDTL NUMBER. AND MACH NUMBER:
FAMA=RATIO OF SPECIFIC HEAT=CP/CV
“EQ=REYVNOLDS NUMBER=RHOG * VZERD # RSTAR / VISC

SPREPRANGTL NUMBER=VIEC + TP / COMD

HEGRPATH NUMEERSVIERD / 2SN
LMI2=MACH MBER TGQUARE=EMO e 2
TFL=COURANT -FRIEDRICHS-LEWY HUMBER

=OTED ALL UNITS IN 3.1 - MKS
CIERD=REFEFENCE IMJTITION VELICITY
THOG=REFERENCE GAS DENSITY

ASTAR=MOTOR CIAMETER( LswERY . . .. ... o

tSTAR=MDTOR LENGTH . . ... .. .. e e e

FSTAR=GAS PRESSURE .. ... ... . L
vISC=COEFFICIENT OF VIGCOSITY OF GAS . . ...... L

CP=SPECIFIC HEAT OF GAS(ISORAR) .. . ... ... ... ..

CORD=COEFFIZ [ENT OF THERMAL CONDUCTIVITY OF GAS ... .. . ..

SEND=SPEED CF SOUND=(GAMA*PSTR/RHOG)+#0. 5 .. . ..

MAIN PROGRAM

DIFFNSION U(4, 5,10}, RR(S)

: M/ 3SEC

KRG *3

' M

M

 N/Mea2
 KG/M-SEC

. JOULE/K-KG
JOULE/K~-M-SEC
.+ M/SEC

COMMON/BLOCK1 s GAMA, CG1, DR, DX, JXM1, KXM1, MXM1, JI(X, KXX: MXX
COMMO: lBLDcKzIREOIPRNIGAMIOCO:ICG;ICG4JCGSI1ODR TADX. DR2, DX2. RR

COMMON{/ BLOCK3 /U, DT

COMMON/BLOCK4/RSTAR, RO, XSTAR, XO,VSTAR.VO:PSTAR PO, RHOG, SSND, EMO

* LCFL

Tlive =0,

[TMA (=2

CALL CDATA

DT=t{ E-9

CALL PODATA

0O 9 L=t , [TrAX

Chll, TIMINT(U, TIME, DT
Chall, FRINT(U, T1IE)
C3NTIWWE

ST12P
END

Sl o rhesinnih, . n . a Laams a s

e e

—
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SUBRCUTINE TIMINT(U, TIME, DT)

DIMENSION U(4,9,10),UB(4,9,10).DF(4,3,10),DG(4,93,10),5(4,3,10),
SB(4.93,10).RR(S3)

COVNMGH/BLOCKL 7GAMA, CGL, DR, DX, JXM1, KXM1, MXM1, JXX, AXX, MXX .
CornMGl/BLOCKZ/REQ, PRN, GAM1, CG2, CG3, CG4, CGS, TODR, TODX, DR2, DX2, RR

C 2-STEP, 2-DIM<NSIONAL MAC CORMACK METHOD

.
Py

“x93
-

Call. DFDRB(U, DF)

CeLL C3IDXB(U, DG)

CALL SORCE(U, S)

03 &CO M=1, MXX

0O &CO J=2, JKM1

DO 6C3 K=2, KXM1

UB(M, M KISUM, J, Ki-DT#DF (M, J, K)-DT#DG (M, J, K)+DT#S(M, J, K)
CCNIINVUE

T 403 M=1, MXX

D0 603 K=1, KKK

UB (M, X, KY=Uo, JXL, K
UZ:iM. 1, K)=U(M 1. K)

0O 504 M=1, MXX

0O =04 J=2, JXM1

UB (M, J, KEL)=U (M, J, KXX)
UB“."1I I 1ry=UM, 4 1)

CALL BUDRY(UB)

Call. CFDRF(UB, OF)

Call D3DYF (LB, 0C)

CALL 3ORCE(UB, 3B)

0g 405 M=1, MXXK

DO 4G5 J=2, JXM1

DO £09% K=2, KXM1

UM, J, K =D, S8 (UM, J, K)+UB(M, J, K))-DT/2. #DF (M, J, K)~DT/2.
AL, L KI+DT/74 #(S(M, J, K)+SB(M, Uy K))

CORTINGE

CALL BNDRY(U)
TIE=TIME+DT

RETURN
END




*

SUBROUTINE SDATA

DL-S1-3I00 U(4, 5, 10), RR(S) ML MM, JXX. KXK, XX
COMMON . BLOCKL - GAMA, CG1, LR, DX JXML, K ' a3 . '

CONr BLIOCK2/REQ, PRN, GAaM1, CG2, €G3, CG4, CGY, TOOR, TODX, DR2, DX2. RR
COMMON/ BLOCK3 /L, DT

COMMIN - BLOCKA /RS TAR, RO, XSTAR, X0, VZERO, VO, PSTAR, PO, RHQG, SSND, EMO
CFL

L “ROBLEM DAT4 ANO BOUNDARY VALUES

VZIERO-1.9Q
RHJII=1. 24
VISC=1. E-9
CP=1 14E3
COMNN=1, £5E-2
PSTAR=2 ES

RSTAR=O. 0%

XSTAR=D, 29

GAlMA=]1. 4
SSNO=(GAMA+PSTAR/RHOG ) ##0. S

C DIMENSICN! ESS CROUP

CFL=0.8

GAMA=L 4
REQ-RHOG#VZERO*RSTAR/VISC
PRN=VISC#CP/COND

EMO: VZERQ/SSND
EMOQ=E10##2

VO=1.
PO=1.
RO=1.
XO=XSTAR/RSTAR

GAM1=GamMa~1 .
Ghin2=CAML1 /GAMA
CAIZ=GAMA<+EMO2
Ce1=5AanM2/:AM3
CG2-4 /3. /REO
CG3:1. /REQ
CG4=GaMA/REQ/PRNI
CG5=G/M14GAMI/REQ

C MESH=3#9

JC(=S
K=o
Mn(=4
JAMLI=IXX~-1
R(M1=¥(X-1
MAML=MMX (-]

DR=RO/.JxM1
DX=X0/¥ k111
TODR=2 +DR
TODX=2. #DX
DR2-CA<DR
D(R-D«-+DX
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C TIME INCREMENT CALCULATION
.C 1. THE COQURANT-FRIEDRICHS-LEWY NUMBER=CFL, STATES THAT C»DT/DX .LE. CFL
C WHERE C=CHARACTERISTIC VELOCITY, AND CFL .GT. O AND .LE. §. CFL IS AN INP!
C 2 0OT=THE DIMENSIONLESS TIME INCREMENT, ACCORDING TO THE CFL CONDITION.
< C INE HAS TO CHCGOSE THE SMALLEST (MIN. OVER K, J) ONE:
3 C OTXX=CFL#DX/CX
< DTRR=CFL+DR/CR

Iy’

EN(=XO0/RO

UML (=2 <ENX
Cy= mnl{+1. /EMO
CR=1. +1. /EMO

f

F DTC((=FL*DX/CX

, DTRR=CFL+DR/CR
DT=AMIN1(DTXX: DTRR?}

V10-=1.
u20-1.
U30-1.
U40-GAMA/ (GAMA-1)

¢
ﬁ ( 0O 701 J=2, JXX
L 701 RR (J)=DR#(J~1)

[y

! C INITIAL VALUE

| c J=y
h DO 7C3 K=1, KXX

{ U1, 1. K)=u10

4 U2, 1, k)=0.

i U(3, 1, K)=ay10#2. #DA+(K-1)
U(4119K)=U40

C J=myxy
U(l, JXX, KI=U10
U(2, JLL K)Y=U20
U3, V(G K =0,
Uid, JOG Ky=syao

700G CCHNTINUE

DEE X} 1

DO 708 u=2, uxx L
Uit, J. 1)ay10
U(2.J'1)=O.
U(3, J. 1)=0.
U(d, s, 112040
709 CCHIIIUE

—ah
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1600
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C K=KXX

| C INNER
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DO 705 J=2., JXM1

Uil J, KXX)=U10
U2, J. KXX)=U20

U3, J: RXA)=U10#2. aDXaK XML
CONTINUE

POINTS

DO 710 J=2. JXM1

DO 710 K=2, KXM1
uct, J, K)=U10

Uz, J, K)y=Uu20

U3, J. A)=UL0#2 #DX<+(K-1)
{4, .1, K)=U40

COUNTINVE

RETURN
EHD

SUBRGUTINE PDATA

DIwHSION U4, 3, 10)
COMMON/BLOCKL /GAMA, CG1, DR, DX, JXM1, KXM1, MXML, XX, KXX, MXX

COMMOti/BLOCKR/REO, PRN, GAM1, CO2, C63, CG4, CGS, TODR, TODX, DR2, DX2, RR
CG#1101{/BLOCK3 /U, DT _ :
CO:1MON/BLOCK4/RSTAR, RO, XSTAR, X0, VZERO, VO, PSTAR, PO, RHOG, SSND, EMO
. CFL

TIM:E=Q.

CALL PRINT(U, TIME)

WRITE(1, 1000)RSTAR, RO, XSTAR, X0, VZERO. VO, PSTAR, PO

WRITE(1, 1003)RHOG, SSND. REO, PRN, EMO, GAMA, CFL., DR, DX, DT
FORMAT(1H1, 8X, ‘MOTOR DIAMETER(M)=’,F93. 2, 10X, ‘RO(DIMENSIONLESS)=",
F3. 2/9X, '‘MOTOR LENGTH(M)=‘,F3. 2, 12X, 'XO(DIMENSIONLESS)=", FS. 2/
9%, "INJECTION VELOCITY(M/SEC)=’,F9.2,’ VO(DIMENSIONLESS)=’,F3.2
/9%, "'GAS PRESSURE(N/M##2)=’,EF. 2, 3X, ‘PO(DIMENSIONLESS)=',FS. 2)
FORMAT(9X, ‘GAS DENSITY(KG/M##3)=’,F3 2/

?¢ ‘SPEED OF SQUND(M/SEC)=',E9. 2/

9%, ‘REO=', ED. 2/9X, 'PRN=‘,FS. 2/9X, ‘EMO= ', EF. 2/9X, ‘GAMA="', FS, 2/
2%, ‘'CFL=’,FS. 2/9X, ‘DR=’,F&. 3/9X, 'DX=’,F&. 3/9X, 'DT=/,E®. 2)

RETURNL
END

T
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SUBRCGUTINE BNDRY(U)

DINENSION U(4,9,10)
COMNMCN/BLOCK1 /GAMA, CG1, DR, DX, JXM1, KXM1, MXM1, JXX, KXX, MXX

DO 9CO =1, MXX
DO 900 K=2, KXM1
Ut 1, R)=U(M, 2, K)
CCON{ INUJUE

DO 903 =2, 3

DG 909 u=t, JxMt

U, J RXXD=UM, J KXML)
CONTINVE

RETURN
END

SUBRCUTINE DFDRB(U, DFB)

DIMENSION U(4,9,10),DFB(4.95,10),F(4,9,10)
COMMCN/BLOCK1 /GAMA, CGL1, DR, DX, UXM1, KXM1, MXM1, JXX, KXX, MXX

DO 1CO M=i, MXX

DO 1CO J=1, JXM1

DO 1CO K=2, KXM1

F(1,J, K)=U(2, J, K)

F(ZI G KI=U(2, Jo K)2U(2, J,K) /UL, J, K)+CCLIRUC(E, J, K)
F(3,J, K)=U(2, J, KIRU(I, J, KI/U(L, J, K)

F(d, J, K)=CAMA+U(2, J, KI#U(4, J, K)/7U(1, J, K)

CCONT INUE

DO 103 =1, MXX

DO 103 U=*2, yxXM1

DO 109 K=2, KXM1

DFB(M. Jy K)=(F (M, J, K)-F (M, J-1.K))/DR
CONTINVE

RETURN
END

L
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SUBROUTINE DGDXB (U, DGB)

DIMENSION U(4,35,10),DGB(4,93,10),.G(4,9,10)
COMMON/BLOCK1/GAMA, CG1. DR, DX, JXM1, KXM1, MXM1, JXX, KXX, MXX

DO 2¢9 M=1, MXX

DO 2CD J=2, JXM}

DO 2¢O K=1, KXM1

G(1,. J, R)=U(3, J, K)

G(2: JyRI=U(2, J, KIRU(I, J.KY/7U(L, J: K)

C(3 W KI)=U(Z D KIFU(I, J K Z7U(L, J KIHCOIRU(E, J, K)
G(q, J.K)I=CAMA2U( 3, J, K)#U(4A, J, K)/U(1, J, K)

CONI INUE

0O 208 M=1, MXX

DO 2038 JU=2, JxXM1

DO 209 K=2, KXM1

DGB (M, J, KIS(G(M, J, K)=-G(M, J, K=1)) /DX
CONI INVE

RETURN
END

SUBROUTINE SORCE(U, S)

DIHENSION U(4, 95, 10),5(4,5,10),V(3,5,10),DVDR(3, 9. 10),

DVeX(2. 9, 10), DVOR2(J, 5, 10), DVDX2(3, 3, 10), DU4ADR (S, 10),

DUSDI((3, 10), DVDRDX (2, 5, 8), RR(I)
CCMIMCN/BLOCK1/7GAMA, CG1, DR, DX, JXM1, KXM2, MXML, JXX, KXX, MXX
CCMMON/BLOCKR/REQ, PRN, GAM1, CGR, CG3, CG4, CGY, TODR, TODX, DR2, DX2, RR

C DEFINE V(11, J, K)

DO 300 M=1, MXM1

DO 3CO J=t, JXX

DO 300 K=1, KXX

Vg, J K)sUM+L, J, K)7UCL, Ji K)
CONTIIVE

< ZEFINE DVDR, DVDR2, DVDX., DVDX2, DVDRDX, DU4DR, DUADX

DO 30% M=1, MXM1

DO 309 Ju=2, JXiM1

DO 203 k=2, KXM1

DVOR (M, U, K)a(V(M, J+1, K)=-V(M, J-1,K))/TODR

DVOR2(M, 2, KIB(V(M, J+1, K)=2. +V (M, J, K)+V (M, J-1, K)) /DR

DVDX (M, J, KIS (VM J, K+1 0 -V(M, U, K=1))/TODX
DVOXR(M, JiKI=(VY(M, J, K1) =2 #V(M, J, K)+V(M, J, K=-1))/DX2

Canl INUE




310

9

..............

L 2 J

L 28 3K 3% I J

=53~

DO 310 u=2, JxMi

DO 310 K=2, KXM1

DVORDX (1, J: K)=(V(1, J+1, K+1)=V(]1, J+1, K-1)=V(1, J-1, K+1)+
v(1,J-1.K=1))/TODR/TODX

DVORDX(2, J, K)=(V(2, J+1, K+1)-V(Q, J+1, K=1)-V(2, J-1, K+1)+
V(2: v-1,K=1))/TODR/TODX

DU4DR(J, K)=(U(4, J+1,K)-U(4, J-1,K))/TODR

DUADX(J, K)=(U(4, J, K+1)-U(4, J: K~1))/TODX
CONTINUVE

C CALCULATE S, J, K)

DO 319 J=2, yxXM1
DO 319 K=2, KXM1
S(1, J, K)==U(2, J: K)/RR(J)

S(2: JK)==U(Q2, J, K)#V(1, J, K}I/RR(J)+CG2/RR (V) #(DVDR (1, J, K) -
V1, J, KI/RR(J))I+CO3#DVDX2(1, J: K)+CGI#DVDORDX (2, J, K} /3. +
CG2#DVDR2(1, J. K)

S(3. J, A)=-U(3, Ji K)2V(1, JI K)/'RR(J)+CGI/RR(J)#(DVDR(2, J, K)+
DVDR(1. J, K) /3. )+CGI#DVDR2(2, J/ K) +CG4DVDX2(2, J, K)+CGIA
DVORD((1, J, K) /3

S(4, J, K)==GAMA=U(4, J, K)*V (1, J: K)/RR(J)+GAMLI#(V(1, J, K)#
DUGDR(J, K)+V (2, J, K)#DUADX(J, K) )+CG4#(DVDR (3, J, K)
/RR(JI+DVOR(3, J, K)+DVDX2(3: J: K} I+CCI# (4. /3. #(DVDX(2, J. K)
242+DVOR (1, J, K) #9824 (V(1, Jr KI/RR(J) )22 ) +DVDR(Z, J, K) #%2
+DVDX (1, J, K) #242-84. #(V(1, J, K}/RR(JIMDVDR(1, J: K)+V (1, J, K)/
RR(J)+DVDX(2, J, K)+DVDR (1, J. K) #DVDX(2: J. K)))

CONTINUE

RETURN
END

[ ———
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SUSROUTINE DFDRF (U, DFF)

DIKENSION U(4, 3, 10), DFF(4,9,10),F(4,93,10)
COMMON/BLOCK L /GAMA, CG1, DR, DX, JXM1, KXM1, MXM1, JXX, KXX, MXX

DO 400 J=2, JXX

DO 4CO K=2, KXM1L

Fl1, U, K)=U(2, J, K)

F(2, J. RIRI(2, U, KIBU(R, J,KI/UL, J, KIFCOLHU(E, J, K)
F(I, J.A)=U(2, J, K)sU(3, J, K)/U(L: Js K)

F(d, J, K)=GAMAU2, J, K)#+U (4, J, K)/U(L1, 4, K)

CONY [NUE

DO 409 M=i, MXX

DO 403 J=2, JXMI

DO 409 K=2, KXM1

DFF (M, J, K)=(F (M, J+1, K)~F (M, J, K))/DR
CONTINJE

RETURN
END

SUBROUTINE DGDXF (U, DGF)

DIMENSION U(4, 3. 10), DGF (4.9, 10),0(4, 9, 10)
COMi1ON/BLOCK1 /GAMA, CG1, DR, DX, JXM1, KXML, MXML, JXX, KXX, MXX

DO 3CO M=1, MXX

DO 3CO J=2, JimM1

DO SCO K=2, KXX

G(1, J,K)=aU(3, 4, K)

G2, J. K)=mU(R, J, KIRJ(I, J, RI/U(L, J, K)

GC(I, V. K)aU(I, J, KIWJ(I, J, KI/U(L, Uy KI+CRL12U( 4, J, K)
G(d, J, K)=3AMA»U(TI, J, K)#U(4, J. K)/U(L, J. K)
COMTINUE

DO 909 M=1, MXX

DO 309 J=2, yxXMi

DO S09 K=2, Kxmi

DCF (M. J K)=(GIM J, K+1)~C(M, J, K))/DX
CONTINUE

RETURN
END

Y
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'a-: SUBROUTINE PRINT(U, TIME)

)
-

DIYENSION U(4,3,10)
COMMON/BLOCKL /GAMA, CGL1, DR, DX, JXML, KXM1, MXML, JXX, KXX, MXX
KM (K(X-1)/2+1
DO 800 M=1, MXX
IF(M.EQ.1) GO TO 801
IF(M. EQ. 2) GO TO 802
IF(M.EQ.3) GO TO 803
C M=4q
WRITE (1,840) TIME
WRITE(1, B49)
C0 7O 804
C M=3
303 WRITE (1,6833) TIME
WRITE (1,843)
GO YO 804
C M=2
202 HWRITE (1.830) TINME
WRITE (1,849%)
G0 TO 204
C M=y
201 URITE (1,325) TIME
URITE (1,849) '
304 DO 810 K=1, KXX
IF (K. EQ. KM) GO TO 8093
WRITE (1,813) (UM J, K),J=1, )
, GO TO 810
810 CONTINVE
800 CONTINUVE
819 FORMAT (1X,’. ‘, 1X. S(E14.6)/)
820 FCRMAT (1X, ‘X ‘., 1X, S(E14. 6)/)
923 FCRMAT (1H1,1X, 'U(1,J,K) . GAS DENSITY VS R AND X. ‘. &X,
* ‘TIME=‘’,E10.3//)
830 FORMAT (1H1,1X, 'U(2,J, K) : RADIAL MOMENTUM VS R AND X. ‘. &6X,
* 'TIME=’,E10.3//)
a3s FORMAT (1H1,1X, ‘U(3, J,K) : AXIAL MOMENTUM V8 R AND X. ‘, &X,
* 'TIME=’,E10.3//)
240 FCRMAT (1M1, 1X, ‘U(4, J,K) : THERMAL ENTHALPY VS R AND X, ‘., &X,
* ‘TIME=',EL10.3//)
349 FORMAT (1K 7. . . e e e e -
® e ‘11
RETURN
Eno







